Adaptive Hashing Based Multiple Variable Length
Pattern Search Algorithm for Large Data Sets

Punit Kanuga, Anamika Chauhan
Department of Information Technology
Delhi Technological University (formerly DCE)
Delhi, India
punitkanuga@gmail.com, anamika@dce.ac.in

Abstract— Searching of patterns in large data sets is need of
the hour to extract knowledge from data warehouses. This paper
presents a new hashing based algorithm for fast search of
multiple variable length patterns in large data sets. It rules out
traditional way of generation of shift table for each character
present in pattern. It can also accommodate patterns which come
up during search time, thus works well for both pre-determined
as well as dynamic pattern set. Furthermore, its speed enhances
as the minimum pattern length P increases for data set of length
n taking O(n/P) time during search. Experimental results for
runtime behavior of presented algorithm with varying
parameters like number of patterns to be searched and length of
data set extended upto (but not limited to) 200,000 characters are
produced.

Keywords— Multiple Pattern Matching, Hashing, Base String,
Match Table, ConPair, Master Record, Redundancy Check

1. INTRODUCTION

Multiple string pattern matching is an area with lot of
research scope. Its objective is to simultaneously search
appearance of a set of strings (called patterns) in large data set.
With increase in both storing capacity as well as processing
speed, size of data being analyzed is growing like never before.
Novel approaches to analyze & search data patterns are used in
various fields such as data mining and ware housing [11],
encrypted cloud data [14], P2P networks [16], network
intrusion detection systems [15], matching DNA sequences
[1],[13], search engines [12] and many more.

2. PREVIOUS WORK

Over the years a lot of work has been done in this field.
Various existing algorithms pre-process patterns to generate a
shift table. Aim of this table is to provide number of characters
which could be shifted or jumped over when a mismatch
occurs without missing any possible match. Concept of single
pattern shift table can also be extended to generate table for
multiple pattern shift table. Rabin Karp algorithm [9] presented
a solution to string matching problem and its generalizations in
1987. Knuth-Morris-Pratt (KMP) algorithm [10] bypass
already matched characters to reduce the search time.
However, it pre-processes each character one by one without
any jump. Boyer Moore gave idea of matching patterns from
end to guarantee large possible jumps in case of mismatch

978-1-4799-5461-2/14/$31.00 ©2014 IEEE

ensuring fast processing [8]. Extensions of these algorithms
were used to generate concept of multi pattern matching
algorithms. Aho-Corasick algorithm merged idea of KMP with
automata theory giving a run time which did not depend on
number of patterns[7]. This was further extended by
Commentz-Walter algorithm [6] which combined Aho-
Corasick algorithm [7] with Boyer-Moore algorithm [8]. Use
of shift table has been a major part of multiple pattern
searching and such algorithms have been proposed by C.
Khancome and V. Boonjing in their papers [4], [5].

Apart from these, varieties of data structures such as Trie,
Bit-parallel, and Hashing table have been used for single and
multiple pattern matching algorithms. Hash table is important
in particular because of speed with which it can determine
whether a pattern is present in hash table or not. This advantage
is further evident as number of entries grows in size. Thus, its
use becomes irresistible in case of large data size. Karp and
Rabin were first to use hash table in searching algorithm [9].
Further, Wu and Manber used this structure to design an
algorithm which was faster than other algorithms at that time
[3]. Later, their concept was improvised to find application in
Network Intrusion Detection System [2] along with many
others.

3. CONCEPT

Let the string in which patterns are to be search be called
BaseString. This process first creates a Match Table containing
hash value of various unique consecutive character pairs across
all patterns. Let this consecutive character pair be called
ConPair. Along with the hash values, Match Table will contain
one or more set of following four values depending on number
of matches of ConPair found in patterns:

i) Offset of pattern in which ConPair is found. Each
pattern will be uniquely identified by its offset number.

ii) Position of last character of ConPair (Pos).

iii) Distance of last character of ConPair from left
extremity of pattern (LExt).

iv) Distance of last character of ConPair from right
extremity of pattern (RExt).

2014 International Conference on Data Science & Engineering (ICDSE)

130

It must be noted that length of pattern at Offset is equal to
Post+RExt+1 in that set value. Here we are considering first
character of pattern to be at zero position.

After creation of Match Table we will consider a window
of p-1 characters of Base String starting from first character
where p is the length of smallest pattern. We will match hash
of last two characters of each window with the Match Table. If
a match (or multiple matches) is found we will process
corresponding sets of values present in table for each match
one by one before proceeding further. The processing is
explained later in this section. After processing of all possible
matches, we will move to next window of p-1 characters till
Base String terminates.

Processing of corresponding set value for each match will
be as follows:

1) Check validity of LPos of set value. LPos is start
position of possible match. This is calculated using current
position of considered character in Base String (CurPos) and
LExt. It is equal to CurPos - LExt. Each LPos must be larger
than or equal to the minimum possible value which is 0. We
call this minimum value LPosMin. Otherwise processing for
this set value is over.

ii) Check validity of RPos of set value. RPos is the end
position of possible match. This is calculated as CurPos +
RExt. Each RPos must be smaller than or equal to the
maximum value which is length L of Base String. We call this
maximum value RPosMax. Otherwise processing for this set
value is over.

iii) Check to remove redundant entry of same match. This
is explained in Redundancy Check algorithm. If a match
already exists processing for this set value is over.

iv) Match hash value of Base String from LPos to RPos
with hash value of pattern associated with the offset value. If
they match a pattern is found. Otherwise processing of this set
value is over.

v) If match is found its entry has to be made in Master
Record structure. This will keep track of all found matches.
This helps in step iii.

Master Record is a tabular structure where each entry
contains a pair of values. These will be the start and end
position in Base String where a match is found. For instance,
entry (12, 16) signifies that a match is found from position 12
to 16 in Base String of length 5 (both values inclusive).

Window length is kept one short of minimum pattern length
and not equal to minimum pattern length. This is because
keeping it equal to later may lead to exclusion of possible
matches for smallest pattern. This will happen when CurPos
will point to start of minimum length pattern in Base String.
Here we are considering only last two characters. And next
window will start just after termination of smallest pattern.
Both these ConPair will not consider any part of pattern. Thus,
this pattern would get excluded. This is further explained in
Example 2 in Searching section.

The above process explains how this algorithm works when
we have complete pattern set before searching initiates. This is

known as Offline or Static Search as pattern set is statically
available.

Suppose we have already searched a part of BaseString and
we wish to include more patterns in search from that point.
Here earlier generated Match Table needs to be only updated
with ConPairs as per newly added patterns. Earlier Match
Table constructed will still be of use. However, window length
may decrease if any of the newly added patterns is smaller than
all other existing pattern. This enables us to search added
patterns from that point and provides adaptive nature to
algorithm as pattern set updates at run time. Thus, it is called
Online Search or Dynamic Search.

4. ALGORITHMS
This section contains the searching algorithm and its
subsidiary algorithms.
Algorithm 1: Create PHash

This algorithm will create a table containing a pair of
values. First is Hvalue which is hash value of each pattern.
Second is Offset which maps pattern to its corresponding hash
value. This means each pair (X,i) will signify that hash value of
pattern number i is equal to X.

Input: Pattern set P {P1, P2,, Pn}
Output: Pattern Hash Table (PHash)

1. Initiate the empty PHash

2. Fori=1ton

3 PHash[i].Hvalue = Hash(P[i])
4, PHash[i].Offset =i

5. End For

6. Return PHash

Algorithm 2: Create MTable

This algorithm will create a table which will contain hash
value of various uniquely possible ConPair across all patterns
along with their Offset, Pos, LExt and RExt. We are using hash
values to reduce the time taken to match ConPair during
searching.

Input: Pattern set P {P1, P2,, Pn}
Output: Match Table (MTable)
Initiate empty MTable
Fori=1ton
For j =0 to 1-2 // where 1 is length of current pattern
Calculate val = Hash(j,j+1)
If val does not exist in MTable
Add new column in MTable

Add val in first column

® NS WD -

Else go to column with val

2014 International Conference on Data Science & Engineering (ICDSE)

131

9. Add set (Offset, Pos, LExt, RExt) in second column
10. EndIf

11. End For

12. End For

13. Return MTable

Algorithm 3: Redundancy Check

This algorithm search presence of value pair (LPos, RPos)
in Master Record. It returns 1 when no match of value pair is
found in Master Record indicating that first entry of this value
should be made in Master Record. If value pair exists in Master
Record it means that this match is already found in Base String
thus it should not be further processed. This case comes up
when a pattern is found in Base String which is substantially
larger than the minimum length pattern.

Input: ValuePair(LPos, RPos)
Output: 0/1

1. [Initiate flagto 1

2. While (MasterRecord exhauts)

3 If(MasterRecord.entry = ValuePair)
4 Return flag-1

5. End If

6 MasterRecord.get Next Entry

7. End While

8. Return flag

Algorithm 4: Search

This algorithm will search BaseString for all patterns. It
will return MasterRecord.

Input: Base String, PHash, MTable

Output: MasterRecord

Set variables:

Lmin = length of smallest pattern

CurPos = Lmin -2

LPosMin=0

RPosMax =L-1

Assuming first character to be at position 0

1. While (CurPos <= RPosMax)

2. If (Hash(CurPos, CurPos+1) found in MTable)
3. For all set values of Hash(CurPos, CurPos+1)
4. LPos = CurPos - LExt

If (LPos < LPosMin)
Goto next set value
End If
RPos = CurPos + RExt
If (RPos > RPosMax)
10. Goto next set value
11. End If
12. If (Redundancy Check(LPos, RPos))
13. If (Hash(BaseString, LPos, RPos) = PHash[Offset])
14. Add (LPos, RPos) in MasterRecord

0 ® N W

15. EndIf

16. EndIf

17. Goto next set value

18. End For

19. EndIf

20. CurPos = CurPos + Lmin — 1
21. End While

22. Return MasterRecord

5. SEARCHING

Example 1: This example shows searching of pattern set in
given BaseString.

Consider set of pattern P {scare, care,arch}. Here P[0] is
{scare}, P[1] is {care}, P[2] is {arch}.

Consider Base String (BS) of length 24 shown in TABLE I.

TABLE L BASE STRING
0|1 (2 |3 (4 |5 (6|7 |8 |9 |10(11

a [r |e [s |c [a |r [e |h [s |t [a
121314 |15]16 17|18 192021 |22]23

r (¢ |h|s |r |a |r |¢c |h |s [c |a

We get TABLE II. hash table PHash as per the algorithm 1.

TABLE II. PHASH TABLE
Hvalue Offset
Hash(scare) | 0
Hash(scar) | 1

Hash(arch) | 2

2014 International Conference on Data Science & Engineering (ICDSE)

132

Consider first pattern scare. Here first ConPair will be sc
with c being the last character of ConPair. It belongs to P[0].
Thus, Offset will be 0. Position of ¢ in P[0] is 1. Thus Pos is 1.
Distance of ¢ from left extremity and right extremity of P[0] is
1 and 3 respectively. Thus, LExt is 1 and RExt is 3. Thus, set
value for this ConPair will be (0,1,1,3). Same ConPair is again
found in P[1] with set value (1,1,1,2). Similarly generating set
values for all ConPair will generate TABLE III. MTable from
Algorithm 2.

TABLE III. MATCH TABLE
ConPair | Set Value (Offset, Pos, LExt, RExt)
sc 0,1,1,3), (1,1,1,2)
ca 0,2,2,2), (1,2,2,1)
ar (0,3,3,1),(1,3,3,0),(2,1,1,2)
re (0,4,4,0)
rc (2,2,21)
ch (2,3,3,0)

Actual hash value should be stored in ConPair column of
MTable. Here we are using character pair for ease of
understanding. However, other implementations are also
possible.

After creation of PHash and MTable, we start the search
phase. MasterRecord is built as search phase proceeds.
Algorithm 3 will be used for Redundancy Check in search
phase.

Initiate the following variable as:
Lmin: 4, length of minimum pattern

CurPos: 2, current position of consideration in BS. It is one
short of Lmin but here we are taking first character position as
0. So, effectively it equals 2.

LPosMin: 0

RPosMax: 23

L: 24, length of string

Consider the following notations:
P: Present in MTable(X)

X: Number of entries

NP: Not present in MTable
RCV: Redundancy Check Value

Step 1: CurPos =2
ConPair (re): P (1)
(0,4,4,0)

LPos: 2-4=-2

LPos < LPosMin
CurPos=2+4-1
CurPos =5
Step 2: CurPos =5
ConPair (ca): P(2)
1) (0,2,2,2)
LPos: 3
RPos: 7
RCV(@3,7)=1
Hash(BS,3,7),PHash(0)
Hash(scare) = Hash(scare)
MasterRecord={(3,7)}
i) (1,2,2,1)
LPos: 3
RPos: 6
RCV(3,6)=1
Hash(scar)=Hash(scar)
MasterRecord={(3,7), (3,6)}
CurPos=5+3
Step 3: CurPos =8
ConPair (eh): NP
CurPos=8+3
Step 4: CurPos =11
ConPair (ta): NP
CurPos=11+3
Step 5: CurPos = 14
ConPair (ch): P(1)
(2,3,3,0)
LPos: 11
RPos: 14
RCV(1L,14)=1
Hash(arch) = Hash(arch)
MasterRecord={(3,7), (3,6),(11,14)}
CurPos=14+3
Step 6: CurPos =17
ConPair (ra): NP
CurPos=17+3
Step 7: CurPos = 20
ConPair (ch) : P(1)

2014 International Conference on Data Science & Engineering (ICDSE)

133

LPos: 17
RPos: 20
RCV(17,20)=1
Hash(arch) = Hash(arch)
MasterRecord={(3,7), (3,6),(11,14),(17,20)}
CurPos=20+3
Step 8: CurPos =23
ConPair (ca): P(2)
) (02,2,2)
LPos: 21
RPos: 25
i) (1,2,2,1)
LPos: 21
RPos: 24
CurPos=23+3
CurPos = 26 > RPosMax
Searching Over

Example 2: This example shows need of taking window
size equal to one short of minimum pattern length.

Consider ear to be one of the pattern and minimum pattern
length be 3. Let window size should be equal to minimum
pattern length, 3. Consider TABLE IV. part of BaseString is
under consideration during of the intermediate steps with
CurPos at 17. Suppose ConPairs {ea,ar} appears only in pattern
ear.

TABLE IV. EXAMPLE 2

16 [17 [18 [19 | 20

At position 17, ConPair under consideration will be (ie).
After processing, next value of CurPos would be 17+3=20. At
postion 20, ConPair (rt) will be considered. Thus, patter ear is
missed during search phase and this happens because it is the
smallest pattern and CurPos happened to be at its initial
position. This lead to two ConPairs (ie,rt) none of which were
part of pattern ear. Thus, to make sure pattern gets identified in
such cases, we reduce window size to one short of smallest
pattern. If this were the case, second ConPair under
consideration would be (ar). Thus, pattern ear would get
searched.

6. RESULT AND ANALYSIS

MasterRecord created after search phase of Example 1 is
{B,7), (3,6),(11,14),(17,20)}. Fetching these values from
BaseString would result in TABLE V.

TABLE V. PATTERNS FOUND
Value Pair | Pattern
(3,7 scare
(3,6) scar
(11,14) arch
(17,20) arch

Length of string (n) = 24

Length of smallest pattern (P) =4
Length of window (P-1) =3

Steps required in searching = n/(P-1)
=24/3=8

Time taken to generate match table MTable is linearly
dependent on sum of lengths of all patterns. If sum of lengths
of all patterns is L and number of patterns is P then time taken
is O(L-P).

6.1 Experimental Setup

Implementation of proposed algorithm is done in C
language on Code::Blocks version 12.11. C is chosen as
implementation language to efficiently design data structures
and hashing functions as desired. Execution time is measured
as mean of several runs and is the amount of CPU time taken in
searching phase only. The may vary as per implementation of
algorithm, architecture of machine used for implementation
and nature of patterns being searched (as it decides uniqueness
of ConPairs). However, intent of presenting these experimental
results is to show the relative order of variation among
different parameters which are established under various
running conditions.

6.2 Performance analysis on variable BaseString length

Number of patterns is kept fixed and length of BaseString is
varied from 10,000 to 200,000.

3Ly

303 /
Fg liz) Juu
2en 3
¥ zxis: Dzse String Lengh 0 T Fi Gy
203 ol St . 5
¥ axis: Search Time / A 2 vmnz Lenzth A
cq AT e Bearen Th
welt 1

/’ leclt 1% +
et
10 *
o = .
se - +
)
i olee *

Fig. 1. Performance Analysis on variable BaseString length

Figure 1(a) shows variation of BaseString length (in thousands)
with searching time measured in milliseconds. Figure 1(b)
shows dependent variation of the same. Both figures show that
searching time taken increases linearly as BaseString length
increases thus proving that this algorithm takes searching time
of O(1/P) for BaseString of length n.

2014 International Conference on Data Science & Engineering (ICDSE)

134

6.3 Performance Analysis on varying number of patterns

BaseString length is kept fixed (100,000) and number of
patterns are increased from 3 to 21 keeping length of smallest
pattern same among all sets.

250

Fg 1) r
200

X axizs: Number of Patterns

150

Y awis: Sezrch Time Fig. 2(0) =

X exis: Number of Detteans

pLEE)

——Nurmbe: uf Pdlerrs =0 Sl Tare
==3eerching lime (nms) _, +

50 +
44_*__‘—-4’_’44 5C
-
0 A : ; T ; ; : , & :
3 12 15 21 r

Fig. 2. Performance Analysis on varying number of patterns

Figure 2(a) shows variation of number of patterns to be
searched in BaseString with searching time (in milliseconds).
Figure 2(b) shows dependent variation of the same. It can be
seen that time is increasing with number of patterns. This is so
because instead of number of patterns, searching time
atomically depends on nature of ConPairs found. They can be
unique as well as repetitive.

250

Fig 3
200 /
X axis: Number of Patterns

Y axis: Search Time /
150 /

100

) /

0 T T T T T T |
3 6 o 12 13 18 21

= Patterns

==nigue

Total

—T i

Variation of number of patterns, unique conpairs, total conpairs
and time taken (in milliseconds)

Fig. 3. Relation among number of patterns, ConPair types and time taken (in
milliseconds)

Figure 3 shows increase in number of uniquely generating
ConPairs and total ConPairs as number of patterns to be
searched in BaseString increases. Overall, increase in searching
time is also evident. This also signifies the fact that searching
time depends on whether a ConPair exists for the given
position. If it does then it further depends on number of
patterns in which that ConPair is found.

7. CONCLUSION

A hashing based search algorithm is presented in this paper
which is capable of searching multiple variable length patterns.
Also, it can adapt itself to new pattern made available to it
during search. Match Table evolves as the number of pattern
increase dynamically and need not to be rebuilt completely. It

also avoids need of shift table and takes uniform jumps over
the BaseString taking O(n/P) time exactly in all cases.

Further this algorithm can be effectively used in two cases.
First is where BaseString is available prior to search. Second
case is when BaseString generates dynamically like in case of
network analysis. However, RPosMax will not be available in
this case. Then terminating condition of algorithm 4 will be till
end of BaseString.

REFERENCES

[1] L. Chen, S. Lu and J. Ram, “Compressed Pattern Matching in DNA
Sequences”, IEEE Computational and Systems Bioinformatics
Conference (CBS 2004), 16-19 Aug 2004, pp. 62-68.

[2] Y. Hong, D. X. Ke, and C. Yong, “An improved Wu-Manber multiple
patterns matching algorithm”, Performance, Computing, and
Communications Conference (IPCCC 2006), 10-12 April 2006, pp. 675-
680.

[3] S. Wu, and U. Manber, “A fast algorithm for multi-pattern searching”,
Report tr-94-17, Department of Computer Science, University of
Arizona, Tucson, AZ, 1994.

[4] C. Khancome and V. Boonjing, “New Hashing-Based Multiple String
Pattern Matching Algorithms”, 2012 Ninth International Conference on
Information Technology- New Generations, (ITNG 2012), LasVegas,
USA, 2-4 April 2012, pp.195-200.

[51 C. Khancome, V. Boonjing and P. Chanvarasuth, “A Two-Hashing
Table Multiple String Pattern Matching Algorithm”, 2013 Tenth
International Conference on Information Technology- New Generations
(ITNG 2013), LasVegas, USA, 15-17 April 2013, pp.696-701.

[6] B. Commentz-Walter, “A string matching algorithm fast on the
average”, In Proceedings of the Sixth International Collogium on
Automata Languages and Programming, 1979, pp.118-132.

[71 A. V. Aho, and M. J. Corasick, “Efficient string matching: An aid to
bibliographic search”, Comm. ACM, 1975, pp.333-340.

[81 R.S. Boyer, and J.S. Moore, “A fast string searching algorithm”,
Communications of the ACM, 20(10), 1977, pp.762-772.

[91 K. M. Karp, and M.O. Rabin, “Efficient randomized pattern matching
algorithms”, IBM Journal of Research and Development, 31(2), 1987,
pp-249-260.

[10] D.E. Knuth, J.H. Morris, V.R Pratt, “Fast pattern matching in strings”,
SIAM Journal on Computing 6(1), 1997, pp.323-350.

[11] S.P. Bora, “Data mining and ware housing”, 3rd International
Conference on Electronics Computer Technology (ICECT), 8-10 April
2011, Vol. 1, pp. 1-5.

[12] Z. Wu, V. Raghavan, H. Qian, V. Rama, W. Meng, H. He and C. Yu,
“Towards Automatic Incorporation of Search engines into a Large-Scale
Metasearch Engine”, IEEE/WIC International Conference on Web
Intelligence (WI’03), 13-17 Oct. 2003, pp. 658-661.

[13] S. Kuruppu, B. Beresford-Smith, T. Conway, and J. Zobel “Iterative
dictionary construction for compression of large DNA data sets”,
IEEE/ACM transactions on Computational Biology and Bioinformatics,
Vol. 9, No. 1, Jan. - Feb. 2012, pp. 137- 149.

[14] N. Cao, C. Wang, M. Li, K. Ren, W. Lou, “Privacy preserving multi
keyword ranked search over encrypted cloud data”, IEEE transactions
on Parallel and Distributed Systems, Vol. 25, No. 1, January 2014, pp.
222-233.

[15] P.C. Bosnjak, and S. M. Cisar, “EWMA based threshold algorithm for
intrusion detection”, Computing and Informatics, Vol. 29 No. 6+, 2010,
pp- 1089-1101.

[16] C. Zhu, T. Liu, W. Zhang, D. Yang, “Greedy-search based service
location in P2P networks”, Journal of Systems Engineering and
Electronics, Volume 16, Issue 4, December 2005, pp. 886- 89.

2014 International Conference on Data Science & Engineering (ICDSE)

135

